Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 52
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Elife ; 132024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38506719

RESUMO

Current models of scene processing in the human brain include three scene-selective areas: the parahippocampal place area (or the temporal place areas), the restrosplenial cortex (or the medial place area), and the transverse occipital sulcus (or the occipital place area). Here, we challenged this model by showing that at least one other scene-selective site can also be detected within the human posterior intraparietal gyrus. Despite the smaller size of this site compared to the other scene-selective areas, the posterior intraparietal gyrus scene-selective (PIGS) site was detected consistently in a large pool of subjects (n = 59; 33 females). The reproducibility of this finding was tested based on multiple criteria, including comparing the results across sessions, utilizing different scanners (3T and 7T) and stimulus sets. Furthermore, we found that this site (but not the other three scene-selective areas) is significantly sensitive to ego-motion in scenes, thus distinguishing the role of PIGS in scene perception relative to other scene-selective areas. These results highlight the importance of including finer scale scene-selective sites in models of scene processing - a crucial step toward a more comprehensive understanding of how scenes are encoded under dynamic conditions.


Assuntos
Encéfalo , Córtex Cerebral , Feminino , Humanos , Reprodutibilidade dos Testes , Meio Ambiente , Ego
2.
bioRxiv ; 2024 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-38405701

RESUMO

We employed high-resolution functional MRI (fMRI) to distinguish the impacts of anisometropia and strabismus (the two most frequent causes of amblyopia) on the evoked ocular dominance (OD) response. Sixteen amblyopic participants (8 females), comprising 8 individuals with strabismus, 7 with anisometropia, 1 with deprivational amblyopia, along with 8 individuals with normal visual acuity (1 female), participated in this study for whom, we measured the difference between the response to stimulation of the two eyes, across early visual areas (V1-V4). In controls, as expected from the organization of OD columns, the evoked OD response formed a striped pattern that was mostly confined to V1. Compared to controls, the OD response in amblyopic participants formed larger fused patches that extended into downstream visual areas. Moreover, both anisometropic and strabismic participants showed stronger OD responses in V1, as well as in downstream visual areas V2-V4. Although this increase was most pronounced in V1, the correlation between the OD response level and the interocular visual acuity difference (measured behaviorally) was stronger in higher-level visual areas (V2-V4). Beyond these common effects, and despite similar densities of amblyopia between the anisometropic and strabismic participants, we found a greater increase in the size of V1 portion that responded preferentially to fellow eye stimulation in anisometropic compared to strabismic individuals. We also found a greater difference between the amplitudes of the response to binocular stimulation, in those regions that responded preferentially to the fellow vs. amblyopic eye, in anisometropic compared to strabismic subjects. In contrast, strabismic subjects demonstrated increased correlation between the OD responses evoked within V1 superficial and deep cortical depths, whereas anisometropic subjects did not. These results provide some of the first direct functional evidence for distinct impacts of strabismus and anisometropia on the mesoscale functional organization of the human visual system, thus extending what was inferred previously about amblyopia from animal models.

3.
Res Sq ; 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38260553

RESUMO

Current models of scene processing in the human brain include three scene-selective areas: the Parahippocampal Place Area (or the temporal place areas; PPA/TPA), the restrosplenial cortex (or the medial place area; RSC/MPA) and the transverse occipital sulcus (or the occipital place area; TOS/OPA). Here, we challenged this model by showing that at least one other scene-selective site can also be detected within the human posterior intraparietal gyrus. Despite the smaller size of this site compared to the other scene-selective areas, the posterior intraparietal gyrus scene-selective (PIGS) site was detected consistently in a large pool of subjects (n=59; 33 females). The reproducibility of this finding was tested based on multiple criteria, including comparing the results across sessions, utilizing different scanners (3T and 7T) and stimulus sets. Furthermore, we found that this site (but not the other three scene-selective areas) is significantly sensitive to ego-motion in scenes, thus distinguishing the role of PIGS in scene perception relative to other scene-selective areas. These results highlight the importance of including finer scale scene-selective sites in models of scene processing - a crucial step toward a more comprehensive understanding of how scenes are encoded under dynamic conditions.

4.
Elife ; 122023 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-36888685

RESUMO

The characterization of cortical myelination is essential for the study of structure-function relationships in the human brain. However, knowledge about cortical myelination is largely based on post-mortem histology, which generally renders direct comparison to function impossible. The repeating pattern of pale-thin-pale-thick stripes of cytochrome oxidase (CO) activity in the primate secondary visual cortex (V2) is a prominent columnar system, in which histology also indicates different myelination of thin/thick versus pale stripes. We used quantitative magnetic resonance imaging (qMRI) in conjunction with functional magnetic resonance imaging (fMRI) at ultra-high field strength (7 T) to localize and study myelination of stripes in four human participants at sub-millimeter resolution in vivo. Thin and thick stripes were functionally localized by exploiting their sensitivity to color and binocular disparity, respectively. Resulting functional activation maps showed robust stripe patterns in V2 which enabled further comparison of quantitative relaxation parameters between stripe types. Thereby, we found lower longitudinal relaxation rates (R1) of thin and thick stripes compared to surrounding gray matter in the order of 1-2%, indicating higher myelination of pale stripes. No consistent differences were found for effective transverse relaxation rates (R2*). The study demonstrates the feasibility to investigate structure-function relationships in living humans within one cortical area at the level of columnar systems using qMRI.


Assuntos
Complexo IV da Cadeia de Transporte de Elétrons , Córtex Visual , Animais , Humanos , Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Mapeamento Encefálico , Córtex Visual/fisiologia , Disparidade Visual , Imageamento por Ressonância Magnética
5.
Front Psychol ; 13: 952998, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36186356

RESUMO

Personal space is the distance that people tend to maintain from others during daily life in a largely unconscious manner. For humans, personal space-related behaviors represent one form of non-verbal social communication, similar to facial expressions and eye contact. Given that the changes in social behavior and experiences that occurred during the COVID-19 pandemic, including "social distancing" and widespread social isolation, may have altered personal space preferences, we investigated this possibility in two independent samples. First, we compared the size of personal space measured before the onset of the pandemic to its size during the pandemic in separate groups of subjects. Personal space size was significantly larger in those assessed during (compared to those assessed before) the onset of the pandemic (all d > 0.613, all p < 0.007). In an additional cohort, we measured personal space size, and discomfort in response to intrusions into personal space, longitudinally before and during the pandemic, using both conventional and virtual reality-based techniques. Within these subjects, we found that measurements of personal space size with respect to real versus virtual humans were significantly correlated with one another (r = 0.625-0.958) and similar in magnitude. Moreover, the size of personal space, as well as levels of discomfort during personal space intrusions, increased significantly during (compared to before) the COVID-19 pandemic in response to both real and virtual humans (all d > 0.842, all p < 0.01). Lastly, we found that the practice of social distancing and perceived (but not actual) risk of being infected with COVID-19 were linked to this personal space enlargement during the pandemic (all p < 0.038). Taken together, these findings suggest that personal space boundaries expanded during the COVID-19 pandemic independent of actual infection risk level. As the day-to-day effects of the pandemic subside, personal space preferences may provide one index of recovery from the psychological effects of this crisis.

6.
J Neurosci ; 42(48): 9011-9029, 2022 11 30.
Artigo em Inglês | MEDLINE | ID: mdl-36198501

RESUMO

Personal space (PS) is the space around the body that people prefer to maintain between themselves and unfamiliar others. Intrusion into personal space evokes discomfort and an urge to move away. Physiologic studies in nonhuman primates suggest that defensive responses to intruding stimuli involve the parietal cortex. We hypothesized that the spatial encoding of interpersonal distance is initially transformed from purely sensory to more egocentric mapping within human parietal cortex. This hypothesis was tested using 7 Tesla (7T) fMRI at high spatial resolution (1.1 mm isotropic), in seven subjects (four females, three males). In response to visual stimuli presented at a range of virtual distances, we found two categories of distance encoding in two corresponding radially-extending columns of activity within parietal cortex. One set of columns (P columns) responded selectively to moving and stationary face images presented at virtual distances that were nearer (but not farther) than each subject's behaviorally-defined personal space boundary. In most P columns, BOLD response amplitudes increased monotonically and nonlinearly with increasing virtual face proximity. In the remaining P columns, BOLD responses decreased with increasing proximity. A second set of parietal columns (D columns) responded selectively to disparity-based distance cues (near or far) in random dot stimuli, similar to disparity-selective columns described previously in occipital cortex. Critically, in parietal cortex, P columns were topographically interdigitated (nonoverlapping) with D columns. These results suggest that visual spatial information is transformed from visual to body-centered (or person-centered) dimensions in multiple local sites within human parietal cortex.SIGNIFICANCE STATEMENT Recent COVID-related social distancing practices highlight the need to better understand brain mechanisms which regulate "personal space" (PS), which is defined by the closest interpersonal distance that is comfortable for an individual. Using high spatial resolution brain imaging, we tested whether a map of external space is transformed from purely visual (3D-based) information to a more egocentric map (related to personal space) in human parietal cortex. We confirmed this transformation and further showed that it was mediated by two mutually segregated sets of columns: one which encoded interpersonal distance and another that encoded visual distance. These results suggest that the cortical transformation of sensory-centered to person-centered encoding of space near the body involves short-range communication across interdigitated columns within parietal cortex.


Assuntos
COVID-19 , Masculino , Animais , Feminino , Humanos , Espaço Pessoal , Lobo Parietal , Mapeamento Encefálico , Imageamento por Ressonância Magnética/métodos
7.
Sci Rep ; 11(1): 20960, 2021 10 25.
Artigo em Inglês | MEDLINE | ID: mdl-34697390

RESUMO

Personal space has been defined as "the area individuals maintain around themselves into which others cannot intrude without arousing discomfort". However, the precise relationship between discomfort (or arousal) responses as a function of distance from an observer remains incompletely understood. Also the mechanisms involved in recognizing conspecifics and distinguishing them from other objects within personal space have not been identified. Accordingly, here we measured personal space preferences in response to real humans and human-like avatars (in virtual reality), using well-validated "stop distance" procedures. Based on threshold measurements of personal space, we examined within-subject variations in discomfort-related responses across multiple distances (spanning inside and outside each individual's personal space boundary), as reflected by psychological (ratings) and physiological (skin conductance) responses to both humans and avatars. We found that the discomfort-by-distance functions for both humans and avatars were closely fit by a power law. These results suggest that the brain computation of visually-defined personal space begins with a 'rough sketch' stage, which generates responses to a broad range of human-like stimuli, in addition to humans. Analogous processing mechanisms may underlie other brain functions which respond similarly to both real and simulated human body parts.


Assuntos
Espaço Pessoal , Estimulação Luminosa/métodos , Percepção Espacial/fisiologia , Adulto , Feminino , Resposta Galvânica da Pele , Humanos , Masculino , Fenômenos Fisiológicos da Pele , Realidade Virtual , Adulto Jovem
8.
Neuroimage Clin ; 30: 102585, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33773165

RESUMO

BACKGROUND: Attachment, or affiliative bonding among conspecifics, is thought to involve neural mechanisms underlying behavioral responses to threat and reward-related social signals. However, attachment-oriented responses may also rely on basic sensorimotor processes. One sensorimotor system that may play a role in attachment is the parietofrontal cortical network that responds to stimuli that are near or approaching the body, the peripersonal space (PPS) monitoring system. We hypothesized that this network may vary in responsivity to such potentially harmful stimuli, particularly those with social salience, based on individual differences in attachment styles. METHODS: Young adults viewed images of human faces or cars that appeared to move towards or away from them, while functional magnetic resonance imaging data were collected. Correlations between each of four adult attachment styles, measured using the Relationship Questionnaire, and responses of the PPS network to approaching (versus withdrawing) stimuli were measured. RESULTS: A region-of-interest (ROI) analysis, focused on six cortical regions of the PPS network that showed significant responses to approaching versus withdrawing face stimuli in an independent sample (n = 80), revealed that anxious attachment style (but not the other 3 attachment styles) was significantly positively correlated with responses to faces (but not to cars) in all six ROIs (r = 0.33-0.49, p = 0.01-0.0001, n = 50). CONCLUSIONS: These findings suggest that anxious attachment is associated with over-responsivity of a sensorimotor network involved in attending to social stimuli near the body.


Assuntos
Imageamento por Ressonância Magnética , Espaço Pessoal , Humanos , Individualidade , Percepção , Adulto Jovem
9.
Artigo em Inglês | MEDLINE | ID: mdl-33524600

RESUMO

BACKGROUND: Associative learning and memory processes, including the generalization of previously learned associations, may be altered in schizophrenia. Deficits in schizophrenia in stimulus generalization, one of the simplest forms of memory, could interfere with the ability to efficiently categorize related, similar information, potentially leading to impairments in daily functioning. METHODS: To measure generalization in schizophrenia, 37 individuals with a nonaffective psychotic disorder and 32 demographically matched healthy control subjects underwent a Pavlovian fear conditioning and generalization procedure, which accounted for variation in perceptual ability across participants, while undergoing functional magnetic resonance imaging. Skin conductance and neural responses to conditioned (CS+), neutral (CS-), and generalization stimuli were measured. Explicit memory ratings reflecting successful generalization were also collected after the scanning, as well as measures of symptom severity. RESULTS: Compared with healthy control subjects, individuals with nonaffective psychotic disorders showed significant deficits in fear generalization across multiple measurements, with impairments in memory ratings and reductions in activation and deactivation of the salience and default networks, respectively, during fear generalization. Moreover, in the psychotic disorder group, greater behavioral and neural abnormalities in generalization were associated with higher levels of negative symptoms. CONCLUSIONS: Fear generalization is impaired in psychotic illness. Given that successful generalization relies on a dynamic balance between excitatory and inhibitory neurotransmission, these results reveal a potentially quantifiable mechanism linked to negative symptoms that can be investigated further in future human and experimental animal studies.


Assuntos
Esquizofrenia , Animais , Condicionamento Clássico/fisiologia , Medo/fisiologia , Generalização Psicológica/fisiologia , Humanos , Imageamento por Ressonância Magnética/métodos
10.
Cereb Cortex ; 31(2): 1163-1181, 2021 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-33073288

RESUMO

In humans, visual stimuli can be perceived across an enormous range of light levels. Evidence suggests that different neural mechanisms process different subdivisions of this range. For instance, in the retina, stimuli presented at very low (scotopic) light levels activate rod photoreceptors, whereas cone photoreceptors are activated relatively more at higher (photopic) light levels. Similarly, different retinal ganglion cells are activated by scotopic versus photopic stimuli. However, in the brain, it remains unknown whether scotopic versus photopic information is: 1) processed in distinct channels, or 2) neurally merged. Using high-resolution functional magnetic resonance imaging at 7 T, we confirmed the first hypothesis. We first localized thick versus thin-type columns within areas V2, V3, and V4, based on photopic selectivity to motion versus color, respectively. Next, we found that scotopic stimuli selectively activated thick- (compared to thin-) type columns in V2 and V3 (in measurements of both overlap and amplitude) and V4 (based on overlap). Finally, we found stronger resting-state functional connections between scotopically dominated area MT with thick- (compared to thin-) type columns in areas V2, V3, and V4. We conclude that scotopic stimuli are processed in partially segregated parallel streams, emphasizing magnocellular influence, from retina through middle stages of visual cortex.


Assuntos
Imageamento por Ressonância Magnética/métodos , Visão Noturna/fisiologia , Estimulação Luminosa/métodos , Córtex Visual/fisiologia , Vias Visuais/fisiologia , Adulto , Visão de Cores/fisiologia , Feminino , Humanos , Masculino , Células Fotorreceptoras Retinianas Bastonetes/fisiologia , Córtex Visual/diagnóstico por imagem , Vias Visuais/diagnóstico por imagem , Adulto Jovem
11.
J Neurosci ; 40(2): 355-368, 2020 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-31744860

RESUMO

Human perception is more "global" when stimuli are viewed within the lower (rather than the upper) visual field. This phenomenon is typically considered as a 2-D phenomenon, likely due to differential neural processing within dorsal versus ventral cortical areas that represent lower versus upper visual fields, respectively. Here we test a novel hypothesis that this vertical asymmetry in global processing is a 3-D phenomenon associated with (1) higher ecological relevance of low-spatial frequency (SF) components in encoding near (compared with far) visual objects and (2) the fact that near objects are more frequently found in lower rather than upper visual fields. Using high-resolution fMRI, collected within an ultra-high-field (7 T) scanner, we found that the extent of vertical asymmetry in global visual processing in human subjects (n = 10) was correlated with the fMRI response evoked by disparity-varying stimuli in human cortical area V3A. We also found that near-preferring clusters in V3A, located within stereoselective cortical columns, responded more selectively than far-preferring clusters, to low-SF features. These findings support the hypothesis that vertical asymmetry in global processing is a 3-D (not a 2-D) phenomenon, associated with the function of the stereoselective columns within visual cortex, especially those located within visual area V3A.SIGNIFICANCE STATEMENT Here we test and confirm a new hypothesis: fine-scale neural mechanisms underlying the vertical asymmetry in global visual processing. According to this hypothesis, the asymmetry in global visual processing is a 3-D (rather than a 2-D) phenomenon, reflected in the function of fine-scale cortical structures (clusters and columns) underlying depth perception. Our findings highlight the importance of considering these structures, as regions of interest, in clarifying the neural mechanisms underlying visual perception. The results also highlight the importance of statistics of natural scenes in shaping human visual perception.


Assuntos
Córtex Visual/fisiologia , Percepção Visual/fisiologia , Adulto , Feminino , Humanos , Imageamento por Ressonância Magnética , Masculino , Campos Visuais/fisiologia , Adulto Jovem
12.
Neuroimage ; 181: 748-759, 2018 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-30053514

RESUMO

Multiple color-selective areas have been described in visual cortex, in both humans and non-human primates. In macaques, hue-selective columns have been reported in several areas. In V2, it has been proposed that such hue-selective columns are mapped so as to mirror the order of wavelength through the visible spectrum, within thin-type stripes. Other studies have suggested a neural segregation of mid-spectral vs. end-spectral hue preferences (e.g. red and blue vs. green and yellow), within thin- and thick-type stripes, respectively. This latter segregation could reduce the spatial 'blur' due to chromatic aberration in the encoding of fine spatial details in the thick-type stripes. To distinguish between these and related models, we tested the organization of hue preferences in human visual cortex using fMRI at high spatial resolution. We used a high field (7T) scanner in humans (n = 7), measuring responses to four independent hues, including end-spectral (i.e. red-gray and blue-gray) and mid-spectral (i.e. green-gray and yellow-gray) isoluminant gratings, and also relative to achromatic luminance-varying (control) stimuli. In each subject, thin- and thick-type columns in V2 and V3 were localized using an independent set of stimuli and scans. We found distinct hue-selective differences along the dimension of mid-vs. end-spectral hues, in striate and early extrastriate visual cortex. First, as reported previously in macaques, V1 responded more strongly to end-spectral hues, compared to mid-spectral hues. Second, the color-selective thin-type stripes in V2 and V3 showed a greater response to end- and mid-spectral hues, relative to luminance-varying gratings. Third, thick-type stripes in V2/V3 showed a significantly stronger response to mid-spectral (compared to end-spectral) hues. Fourth, in the higher-tier color-selective area in occipital temporal cortex (n = 4), responses to all four hues were statistically equivalent to each other. These results suggest that early visual cortex segregates the processing of mid-vs. end-spectral hues, perhaps to counter the challenging optical constraint of chromatic aberration.


Assuntos
Mapeamento Encefálico/métodos , Percepção de Cores/fisiologia , Imageamento por Ressonância Magnética/métodos , Lobo Temporal/fisiologia , Córtex Visual/fisiologia , Adulto , Cor , Feminino , Humanos , Masculino , Lobo Temporal/diagnóstico por imagem , Córtex Visual/diagnóstico por imagem , Adulto Jovem
13.
Neuroimage ; 168: 358-365, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-27622398

RESUMO

When visual objects are located in the lower visual field, human observers perceive objects to be nearer than their real physical location. Conversely, objects in the upper visual field are viewed farther than their physical location. This bias may be linked to the statistics of natural scenes, and perhaps the ecological relevance of objects in the upper and lower visual fields (Previc, 1990; Yang and Purves, 2003). However, the neural mechanisms underlying such perceptual distortions have remained unknown. To test for underlying brain mechanisms, we presented visual stimuli at different perceptual distances, while measuring high-resolution fMRI in human subjects. First, we localized disparity-selective thick stripes and thick-type columns in secondary and third visual cortical areas, respectively. Consistent with the perceptual bias, we found that the thick stripe/columns that represent the lower visual field also responded more selectively to near rather than far visual stimuli. Conversely, thick stripe/columns that represent the upper visual field show a complementary bias, i.e. selectively higher activity to far rather than near stimuli. Thus, the statistics of natural scenes may play a significant role in the organization of near- and far-selective neurons within V2 thick stripes and V3 thick-type columns.


Assuntos
Percepção de Profundidade/fisiologia , Neuroimagem Funcional/métodos , Imageamento por Ressonância Magnética/métodos , Córtex Visual/diagnóstico por imagem , Córtex Visual/fisiologia , Campos Visuais/fisiologia , Percepção Visual/fisiologia , Adulto , Feminino , Humanos , Masculino , Adulto Jovem
14.
J Neurosci ; 37(33): 8014-8032, 2017 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-28724749

RESUMO

Magnocellular versus parvocellular (M-P) streams are fundamental to the organization of macaque visual cortex. Segregated, paired M-P streams extend from retina through LGN into V1. The M stream extends further into area V5/MT, and parts of V2. However, elsewhere in visual cortex, it remains unclear whether M-P-derived information (1) becomes intermixed or (2) remains segregated in M-P-dominated columns and neurons. Here we tested whether M-P streams exist in extrastriate cortical columns, in 8 human subjects (4 female). We acquired high-resolution fMRI at high field (7T), testing for M- and P-influenced columns within each of four cortical areas (V2, V3, V3A, and V4), based on known functional distinctions in M-P streams in macaque: (1) color versus luminance, (2) binocular disparity, (3) luminance contrast sensitivity, (4) peak spatial frequency, and (5) color/spatial interactions. Additional measurements of resting state activity (eyes closed) tested for segregated functional connections between these columns. We found M- and P-like functions and connections within and between segregated cortical columns in V2, V3, and (in most experiments) area V4. Area V3A was dominated by the M stream, without significant influence from the P stream. These results suggest that M-P streams exist, and extend through, specific columns in early/middle stages of human extrastriate cortex.SIGNIFICANCE STATEMENT The magnocellular and parvocellular (M-P) streams are fundamental components of primate visual cortical organization. These streams segregate both anatomical and functional properties in parallel, from retina through primary visual cortex. However, in most higher-order cortical sites, it is unknown whether such M-P streams exist and/or what form those streams would take. Moreover, it is unknown whether M-P streams exist in human cortex. Here, fMRI evidence measured at high field (7T) and high resolution revealed segregated M-P streams in four areas of human extrastriate cortex. These results suggest that M-P information is processed in segregated parallel channels throughout much of human visual cortex; the M-P streams are more than a convenient sorting property in earlier stages of the visual system.


Assuntos
Córtex Visual/citologia , Córtex Visual/fisiologia , Vias Visuais/citologia , Vias Visuais/fisiologia , Adulto , Animais , Feminino , Humanos , Macaca fascicularis , Imageamento por Ressonância Magnética/métodos , Masculino , Estimulação Luminosa/métodos , Adulto Jovem
16.
J Neurosci ; 36(6): 1841-57, 2016 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-26865609

RESUMO

In nonhuman primates (NHPs), secondary visual cortex (V2) is composed of repeating columnar stripes, which are evident in histological variations of cytochrome oxidase (CO) levels. Distinctive "thin" and "thick" stripes of dark CO staining reportedly respond selectively to stimulus variations in color and binocular disparity, respectively. Here, we first tested whether similar color-selective or disparity-selective stripes exist in human V2. If so, available evidence predicts that such stripes should (1) radiate "outward" from the V1-V2 border, (2) interdigitate, (3) differ from each other in both thickness and length, (4) be spaced ∼3.5-4 mm apart (center-to-center), and, perhaps, (5) have segregated functional connections. Second, we tested whether analogous segregated columns exist in a "next-higher" tier area, V3. To answer these questions, we used high-resolution fMRI (1 × 1 × 1 mm(3)) at high field (7 T), presenting color-selective or disparity-selective stimuli, plus extensive signal averaging across multiple scan sessions and cortical surface-based analysis. All hypotheses were confirmed. V2 stripes and V3 columns were reliably localized in all subjects. The two stripe/column types were largely interdigitated (e.g., nonoverlapping) in both V2 and V3. Color-selective stripes differed from disparity-selective stripes in both width (thickness) and length. Analysis of resting-state functional connections (eyes closed) showed a stronger correlation between functionally alike (compared with functionally unlike) stripes/columns in V2 and V3. These results revealed a fine-scale segregation of color-selective or disparity-selective streams within human areas V2 and V3. Together with prior evidence from NHPs, this suggests that two parallel processing streams extend from visual subcortical regions through V1, V2, and V3. SIGNIFICANCE STATEMENT: In current textbooks and reviews, diagrams of cortical visual processing highlight two distinct neural-processing streams within the first and second cortical areas in monkeys. Two major streams consist of segregated cortical columns that are selectively activated by either color or ocular interactions. Because such cortical columns are so small, they were not revealed previously by conventional imaging techniques in humans. Here we demonstrate that such segregated columnar systems exist in humans. We find that, in humans, color versus binocular disparity columns extend one full area further, into the third visual area. Our approach can be extended to reveal and study additional types of columns in human cortex, perhaps including columns underlying more cognitive functions.


Assuntos
Percepção de Cores/fisiologia , Córtex Visual/fisiologia , Adulto , Mapeamento Encefálico , Cor , Percepção de Profundidade , Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Feminino , Lateralidade Funcional/fisiologia , Humanos , Imageamento por Ressonância Magnética , Masculino , Rede Nervosa/fisiologia , Estimulação Luminosa , Disparidade Visual , Córtex Visual/anatomia & histologia , Vias Visuais , Adulto Jovem
17.
Neuroimage Clin ; 9: 233-43, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26484048

RESUMO

Schizophrenia is associated with subtle abnormalities in day-to-day social behaviors, including a tendency in some patients to "keep their distance" from others in physical space. The neural basis of this abnormality, and related changes in social functioning, is unknown. Here we examined, in schizophrenic patients and healthy control subjects, the functioning of a parietal-frontal network involved in monitoring the space immediately surrounding the body ("personal space"). Using fMRI, we found that one region of this network, the dorsal intraparietal sulcus (DIPS), was hyper-responsive in schizophrenic patients to face stimuli appearing to move towards the subjects, intruding into personal space. This hyper-responsivity was predicted both by the size of personal space (which was abnormally elevated in the schizophrenia group) and the severity of negative symptoms. In contrast, in a second study, the activity of two lower-level visual areas that send information to DIPS (the fusiform face area and middle temporal area) was normal in schizophrenia. Together, these findings suggest that changes in parietal-frontal networks that support the sensory-guided initiation of behavior, including actions occurring in the space surrounding the body, contribute to social dysfunction and negative symptoms in schizophrenia.


Assuntos
Lobo Frontal/patologia , Lobo Parietal/patologia , Espaço Pessoal , Esquizofrenia/patologia , Comportamento Social , Adulto , Atenção/fisiologia , Mapeamento Encefálico , Feminino , Lobo Frontal/irrigação sanguínea , Humanos , Processamento de Imagem Assistida por Computador , Imageamento por Ressonância Magnética , Masculino , Rede Nervosa/patologia , Testes Neuropsicológicos , Lobo Parietal/irrigação sanguínea , Estimulação Luminosa , Adulto Jovem
18.
Cereb Cortex ; 25(10): 4009-28, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25480358

RESUMO

Previous studies have attributed multiple diverse roles to the posterior superior temporal cortex (STC), both visually driven and cognitive, including part of the default mode network (DMN). Here, we demonstrate a unifying property across this multimodal region. Specifically, the lateral intermediate (LIM) portion of STC showed an unexpected feature: a progressively decreasing fMRI response to increases in visual stimulus size (or number). Such responses are reversed in sign, relative to well-known responses in classic occipital temporal visual cortex. In LIM, this "reversed" size function was present across multiple object categories and retinotopic eccentricities. Moreover, we found a significant interaction between the LIM size function and the distribution of subjects' attention. These findings suggest that LIM serves as a part of the DMN. Further analysis of functional connectivity, plus a meta-analysis of previous fMRI results, suggests that LIM is a heterogeneous area including different subdivisions. Surprisingly, analogous fMRI tests in macaque monkeys did not reveal a clear homolog of LIM. This interspecies discrepancy supports the idea that self-referential thinking and theory of mind are more prominent in humans, compared with monkeys.


Assuntos
Atenção/fisiologia , Lobo Temporal/fisiologia , Córtex Visual/fisiologia , Percepção Visual/fisiologia , Adulto , Animais , Mapeamento Encefálico , Feminino , Fixação Ocular , Humanos , Macaca mulatta , Imageamento por Ressonância Magnética , Masculino , Vias Neurais/fisiologia , Reconhecimento Visual de Modelos/fisiologia , Estimulação Luminosa , Especificidade da Espécie , Campos Visuais/fisiologia , Adulto Jovem
19.
Front Hum Neurosci ; 8: 624, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25249955

RESUMO

Fear generalization is the production of fear responses to a stimulus that is similar-but not identical-to a threatening stimulus. Although prior studies have found that fear generalization magnitudes are qualitatively related to the degree of perceptual similarity to the threatening stimulus, the precise relationship between these two functions has not been measured systematically. Also, it remains unknown whether fear generalization mechanisms differ for social and non-social information. To examine these questions, we measured perceptual discrimination and fear generalization in the same subjects, using images of human faces and non-face control stimuli ("blobs") that were perceptually matched to the faces. First, each subject's ability to discriminate between pairs of faces or blobs was measured. Each subject then underwent a Pavlovian fear conditioning procedure, in which each of the paired conditioned stimuli (CS) were either followed (CS+) or not followed (CS-) by a shock. Skin conductance responses (SCRs) were also measured. Subjects were then presented with the CS+, CS- and five levels of a CS+-to-CS- morph continuum between the paired stimuli, which were identified based on individual discrimination thresholds. Finally, subjects rated the likelihood that each stimulus had been followed by a shock. Subjects showed both autonomic (SCR-based) and conscious (ratings-based) fear responses to morphs that they could not discriminate from the CS+ (generalization). For both faces and non-face objects, fear generalization was not found above discrimination thresholds. However, subjects exhibited greater fear generalization in the shock likelihood ratings compared to the SCRs, particularly for faces. These findings reveal that autonomic threat detection mechanisms in humans are highly sensitive to small perceptual differences between stimuli. Also, the conscious evaluation of threat shows broader generalization than autonomic responses, biased towards labeling a stimulus as threatening.

20.
Proc Natl Acad Sci U S A ; 111(33): E3467-75, 2014 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-25092328

RESUMO

Our visual environment abounds with curved features. Thus, the goal of understanding visual processing should include the processing of curved features. Using functional magnetic resonance imaging in behaving monkeys, we demonstrated a network of cortical areas selective for the processing of curved features. This network includes three distinct hierarchically organized regions within the ventral visual pathway: a posterior curvature-biased patch (PCP) located in the near-foveal representation of dorsal V4, a middle curvature-biased patch (MCP) located on the ventral lip of the posterior superior temporal sulcus (STS) in area TEO, and an anterior curvature-biased patch (ACP) located just below the STS in anterior area TE. Our results further indicate that the processing of curvature becomes increasingly complex from PCP to ACP. The proximity of the curvature-processing network to the well-known face-processing network suggests a possible functional link between them.


Assuntos
Macaca mulatta/fisiologia , Córtex Visual/fisiologia , Animais , Imageamento por Ressonância Magnética , Masculino
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...